[5] Plow versus Ice Age: Erosion rate variability from glacial–interglacial climate change is an order of magnitude lower than agricultural erosion in the Upper Mississippi River Valley, USA; Penprase, S.B., Wickert, A.D., Larson, P.H., Wood, J.J., Larsen, I.J., and Rittenour, T.M.; Geology, 2025: https://doi.org/10.1130/G52585.1 |
[4] Late Pleistocene glacial history of the Lago Argentino outlet lobe; Romero, M., Penprase, S., Van Wyk De Vries, M., Jones, A., Strelin, J., Wickert, A., Marcott, S., Martini, M., Brignone, G., MacGregor, K., Shapley, M., Ito, E., Rittenour, T., Caffee, M.; Climate of the Past, 2024: https://doi.org/10.5194/cp-20-1861-2024 |
[3] Controls on Glacial Kettle Morphology; Prescott, J., Zoet, L., Hansen, D., Elmo, J., Penprase, S.; Earth Surface Processes and Landforms, 2024: https://doi.org/10.1002/esp.6030 |
[2] Open-source automated ablation stakes to constrain temperature-index melt models; Wickert, A., Barnhart, K., Armstrong, W., Romero, M., Schulz, B., Ng, C., Sandell, C., La Frenierre, J., Penprase, S., Van Wyk de Vries, M., MacGregor, K.; Annals of Glaciology, 2024: https://doi.org/10.1017/aog.2024.21 |
[1] Increasing rate of 21st century volume loss of the Patagonian Icefields measured from proglacial river discharge; Van Wyk De Vries, M., Romero, M., Penprase, S., Ng, G.-H.C., and Wickert, A.D.; Journal of Glaciology, 2023: https://doi.org/10.1017/jog.2023.9 |